
Page 1 of 3

Problem 8: Optimal Search Trees [HackerRank]
By Ruijie Fang

1 Background: Searching in Databases

You are working for a very large database company and they have a database index consisting of n sorted
integer keys S := s1, s2, ..., sn with si ≤ si+1 for 1 ≤ i < n, each mapping to some value. The n keys are
some predetermined sparse, big integers, which you don’t know, meaning they are non-trivial to hash (if you
don’t know what this means, don’t worry about it). Furthermore, you know that the company workload
every day generates a fixed access pattern to the database, resulting in access frequencies F1, F2, ..., Fn ∈ Z.
You can of course use a dynamic search tree, like a splay tree, to answer this problem. However your boss
wants you to be optimal: Let d(i) denote the depth of the i-th node in the array (S) in the search tree.
Let the root node in the search tree have depth 0 (i.e. it can be accessed at no cost). An optimal search
tree is a search tree that minimizes the cost function

∑n
i=1 Fi · d(i). Intuitively, this means you want the

most frequently accessed values to be toward the top, and least frequently accessed toward the bottom.

2 Definitions

Binar Search Tree: Given a set S := {k1, k2, ..., kn} of n integer keys with k1 ≤ k2 ≤ ... ≤ kn, a binary
search tree T2 is a tree of n binary search tree nodes. A binary search tree node can be represented as
(x, c1, c2) where x ∈ S is a key in S uniquely represented in T2, c1 is the leftmost child node of x and c2
is the rightmost child node of x. Let S(1, x) denote the set of keys in the subtree rooted by c1, and let
S(2, x) be defined analogously for the right. In addition we impose the constraint all keys in S(1, x) ≤ x
and all keys in S(2, x) ≥ x.

Ternary Search Tree: Defined analogously. Given a set S := {k1, k2, ..., kn} of n integer keys with
k1 ≤ k2 ≤ ... ≤ kn: A ternary search tree T3 is a tree of n ternary search tree nodes. A ternary search tree
node can be represented as (x, c1, c2, c3) where x ∈ S is a key in S uniquely represented in T3, c1 is the
leftmost child node of x, c2 is the middle child node of x, and c3 is the rightmost node of x. Let S(1, x)
denote the set of keys in the subtree rooted by c1, and let S(2, x) and S(3, x) be defined analogously. We
impose the constraint that x has to be either greater than or equal to all keys in S(1, x) and S(2, x) and
less than or equal to all keys in S(3, x), or x is greater than or equal to keys in S(1, x) and less than or
equal to all keys in S(2, x) and S(3, x).



Page 2 of 3

Check. Why does accessing a key in a well-balanced ternary search tree take O(log3 n) comparisons?

3 Problem Statements

Given n keys and associated access frequencies F1, F2, ..., Fn, write a program to find out either a
optimal binary search tree in O(n2)-time, or an optimal ternary search tree in O(n3)-time. There are two
subproblems; solving any part gets you the 15 points of credit.

1. Given
−→
F and n keys k1, k2, ..., kn ∈ Z sorted in increasing order, write a program to optimal cost of

an optimal binary search tree, in O(n2)-time.

• Input constraint: 1 ≤ n ≤ 2000. Use 64-bit signed integer to for your solution so that in case of
overflow the behavior will be the same.

• Running time limit: 1 second.

• Hint: An O(n3) solution will not work.

2. Given
−→
F and n keys k1, ..., kn ∈ Z sorted in increasing order, write a program that outputs the

optimal cost of an optimal ternary search tree, in O(n3)-time.

• Input constraint: 1 ≤ n ≤ 300. Use 64-bit signed integer to for your solution so that in case of
overflow the behavior will be the same.

• Running time limit: 1 second.

• Hint: An O(n4) solution will not work.

3. Extra credit opportunity: Email coscon.written.submission@gmail.com and attach a proof of the
following math problem. This can potentially get you an additional 3 points max.1

A cute math problem. We say a function f : R → R is convex if 1
2
(f(x) + f(y)) ≤ f(x+y

2
). Let

g : R × R → R be defined as g(a, b) = f(b − a). Show that g(a, c) + g(b, d) ≥ g(b, c) + g(a, d) ⇐⇒ f is
convex, for a ≤ b ≤ c ≤ d.

Concrete input format descriptions start on the next page.

1If you have no idea what the inequality about g is, maybe solving (2) will be a little more accessible to you. This is strictly not necessarily
for solving any part of this problem.



Page 3 of 3

Part 1 Input/Output Format: Everything is on a single line. The first number read in will be n, the
number of nodes. The next n space-separated integers represent F1, ..., Fn, respectively. Your program
should output a single number represent the optimal cost of a BST on these nodes and frequencies.

Sample Input for Part 1:

6 1 4 8 3 6 5

Sample Output for Part 1:

28

Part 2 Input/Output Format: Everything is on a single line. The first number read in will be n, the
number of nodes. The next n space-separated integers represent F1, ..., Fn, respectively. Your program
should output a single number represent the optimal cost of a TST on these nodes and frequencies.

First Sample Input for Part 2:

6 1 4 8 3 6 5

First Sample Output for Part 2:

23

Second Sample Intput for Part 2:

4 3 8 4 5

Second Sample Output for Part 2:

12

Third Sample Intput for Part 2:

4 1 3 4 8

Third Sample Output for Part 2:

9


	Background: Searching in Databases
	Definitions
	Problem Statements

