
Page 1 of 8

Problem 7: Welcome to Recursion Hell [Email Submission]
By Ruijie Fang

1 Background: Interpreted vs. Native Languages

Mainstream programming languages largely fall into two categories: interpreted, or native. Languages such
as Java, Python, Ruby, and Erlang are interpreted, meaning they are compiled into some intermediate
bytecode that isn’t directly executable on a CPU, and the bytecode is then executed on an interpreter,
which can be seen as a “virtual machine” that runs the bytecode instructions line-by-line. For Java, the
interpreter is called the Java Virtual Machine (JVM), which uses a stack-based architecture, meaning that
it is register-free and uses a stack and push/pop operations to execute bytecode. Erlang has the BEAM
virtual machine (in contrast to the JVM, BEAM uses a register-based architecture; a register-based ar-
chitecture contains virtual registers, which, while making it more efficient and akin to a physical CPU,
makes code generation harder since the compiler would have to solve the register allocation problem1);
for Python and Ruby, the default implementation combines a source code-to-bytecode compiler and a
bytecode interpreter, so that one can execute a Python/Ruby source file within one command. This is in
contrast to native languages such as C, C++, Go, or Rust, which are compiled down to machine code and
executed directly on the target CPU.

The benefits of an interpreted language is obvious: Once the input program is compiled into bytecode, it
is portable between different platforms and across different CPU architectures, as long as an interpreter is
available on that architecture. For instance, once we compile a Java source file down to a Java bytecode
file, we can run it across different CPU architectures (x86, ARMv8, Sun SPARC, Itanium, MIPS) as long
as there is a JVM interpreter implementation for that platform.

Java, in contrast to C/C++, is also generally considered more debuggable: for instance, at Princeton it is
the language-of-choice in COS 126, instead of C or C++. One particularly interesting feature of the JVM
is the StackOverflowException: Similar to other languages, JVM limits the recursion depth. When a
recursion is too deep (e.g. fib(1 << 26) where fib is the recursive Fibonacci function, the JVM throws a
StackOverflowException and a stack trace, telling you specifically where in your source code you made
the deeply recursive function call.

1Prof. Andrew Appel, of Princeton COS, has made some important contributions to the solution of this problem.

Page 2 of 8

C, on the other hand, is less friendly. If you compile a C file that contains a deep recursion, quite possibly
running the resultant binary will result in a segmentation fault and no other information, making it
difficult to debug where everything went wrong. I’m sure many of you can sympathize (cough, cough,
COS 217).

We will consider the following two subproblems in the C programming language. First, given only the
declaration of a deeply recursive function as a header file, write a wrapper function that calls it such that the
deep recursion call can be performed correctly without inducing a segmentation fault. The challenge? Do
it without changing the actual implementation. Second, for any general recursion, write a wrapper function
such that when the recursion exceeds a given depth, output a line containing ”StackOverflowException”
instead of inducing a segmentation fault. You might wonder if this is possible! The answer is yes.
Doing any part gets you 15 points. Doing both parts correctly get you 30 points.

2 Part A: Make a Deeply Recursive Function Run (15 Points)

You are given a deeply recursive function signature unsigned long long BadF(unsigned long long

n, unsigned long long p, unsigned long long k) without access to its implementation. Write a
C file containing the function unsigned long long BadFHandler(unsigned long long n, unsigned

long long p, unsigned long long k) that performs some magic and returns the answer of calling
BadF(n,p,k), which by default results in a segmentation fault because it recurses too deep.

We’ll compile your solution in gcc-7.5.0 with -fPIC -O0 flags and call BadFHandler with some test
inputs to see if BadFHandler(n,p,k) yields the same result as BadF(n,p,k). To start, write a C file
named PartA.c with the following structure:

// declaration of the deeply recursive function.

unsigned long long BadF(unsigned long long n,

unsigned long long p, unsigned long long k);

// Your implementation of a Wrapper function.

unsigned long long BadFHandler(unsigned long long n, unsigned long long p,

unsigned long long k) {

// some code here that calculates the result of BadF(n,p,k) using magic...

return BadF(n,p,k); // this will result in segfaults by default...

}

Page 3 of 8

Assumptions: A grading machine will be configured for this problem. The target machine runs an x86-64
CPU and Ubuntu 16.04 Operating System. On this platform unsigned/int are 32 bits wide, char is a
single byte and unsigned long long is 64-bits wide. Your code will be run using the gcc 11.1.0 compiler
with flags -O0 -fPIC. You are not permitted to include any header files when submitting, al-
though we will help you include the following header files: stdlib.h, memory.h, signal.h, unistd.h,

setjmp.h, string.h, stdio.h. Usage of any other header file is strictly prohibited and will not make
your code compile. Please read page 5 to look over the technical details of this setup — there
will be some compiler-specific information that will help your submission.

Grading and How to Submit

Email your completed file to coscon21.interactive.grader@gmail.com with attachment PartA.c as the
exact file name and with P7PartA as the exact email subject and wait for a reply. Your email must also
be sent from your Princeton address. Emailing multiple times is fine, although sending too many emails
over a short period will result in a lockout and potential disqualification.

The mailbox is configured with an aggressive spam filter to filter out any non-princeton.edu email or email
from any account sent too frequently over a short period. Note that inlining assembly is permitted (i.e. the
use of asm, volatile asm keywords are fine).

Hint. A two-line solution in C exists for this problem. Hint 2. Feel free to use architecture-dependent
assumptions. You may also assume the process is being run on a single thread. Hint++. A solution in
assembly is probably safer, but our explanation in the end of this problem explains why you can also do
it in C with gcc-7.5.0 (and indeed, any old version of gcc).

3 Part B: Handle StackOverflow (15 Points)

The setup is same as Part A, except we introduce a new library function with signature

void StackOverflowException(unsigned long long n,

unsigned long long p, unsigned long long q)

Whenever naively calling BadF(n,p,k) will result in a segfault (due to a stack overflow), you should invoke
the above function in BadFHandler to report the exception, and return 0. Otherwise, you should return
the correct value of BadF. The template for Part B is as follows (next page):

Page 4 of 8

// declaration of the deeply recursive function.

unsigned long long BadF(unsigned long long n,

unsigned long long p, unsigned long long k);

// If calling BadF(n,p,k) results in a stack overflow exception, call this

// function and use your code from part A to return the value of BadF(n,p,k).

void StackOverflowException(unsigned long long n,

unsigned long long p, unsigned long long k);

// Your implementation of a Wrapper function.

unsigned long long BadFHandler(unsigned long long n,

unsigned long long p, unsigned long long k) {

// TODO: Decide when to call StackOverflowException(n, p, k).

// some code here that calculates

// the result of BadF(n,p,k) using magic from part A...

return BadF(n,p,k); // without changes, this will result in a segfault

}

For this part, feel free to use Google and/or consult man pages if it helps. If you code up everything in C,
the solution for this part is less compiler-dependant than the previous part: We tested our solution across
four different CPUs (Intel Xeon x64, AMD EPYC x64, Intel Core i5 x64, and Apple M1 arm64) and at
least four different clang/gcc versions, including gcc-7.5.0 on amd64, gcc-11.1.0 on Apple M1, gcc-9.3.0 on
amd64 and x86.

Grading and How to Submit

Email your completed file to coscon21.interactive.grader@gmail.com with attachment PartB.c as the
exact file name and with P7PartB as the exact email subject and wait for a reply. Your email must also
be sent from your Princeton address. Emailing multiple times is fine, although sending too many emails
over a short period will result in a lockout and potential disqualification.

Page 5 of 8

Some Technical Notes

When writing up this problem, we found that newer versions of gcc, as well as clang, compile C99-style
variable-length stack-allocated arrays inconsistently across different platforms. For instance, one might
imagine the following program using gcc -O0:

int main()

{

int i = 16384 / 2 * 2;

char big[i]; return 0;

}

Compiles to assembly that executes constant number of instructions, where the program offsets i against
rsp to allocate the space needed for big. However, we found that newer versions of gcc, as well as some
versions of clang prefer to do it in a loop, extending rsp by a page boundary every iteration:

<truncated code above>

.L2:

cmpq %rdx, %rsp

je .L3

subq $4096, %rsp

orq $0, 4088(%rsp)

jmp .L2

.L3:

<truncated code below>

We reassure you that gcc-7.5.0 on our x86-64 Ubuntu 20.04 environment will not have the
above behavior. Instead gcc-7.5.0 compiles the above C code to something like the following (beginning
on next page). If you’re in doubt, maybe a solution utilizing inline assembly is better. The next
few pages will also contain detailed system information and gcc version information of our grading server
to help facilitate your debugging (although likely it isn’t needed). See the next page for what the above
C code compiles to on our machine.

Page 6 of 8

main: pushq %rbp

movq %rsp, %rbp

subq $32, %rsp

movq %fs:40, %rax

movq %rax, -8(%rbp)

xorl %eax, %eax

movq %rsp, %rax

movq %rax, %rcx

movl $16384, -28(%rbp)

movl -28(%rbp), %eax

movslq %eax, %rdx

subq $1, %rdx

movq %rdx, -24(%rbp)

movslq %eax, %rdx

movq %rdx, %r8

movl $0, %r9d

movslq %eax, %rdx

movq %rdx, %rsi

movl $0, %edi

cltq

movl $16, %edx

subq $1, %rdx

addq %rdx, %rax

movl $16, %edi

movl $0, %edx

divq %rdi

imulq $16, %rax, %rax

subq %rax, %rsp

movq %rsp, %rax

addq $0, %rax

movq %rax, -16(%rbp)

movl $0, %eax

movq %rcx, %rsp

movq -8(%rbp), %rdi

xorq %fs:40, %rdi

je .L3

Page 7 of 8

gcc -v Output

Using built-in specs.

COLLECT_GCC=gcc-7

COLLECT_LTO_WRAPPER=/usr/lib/gcc/x86_64-linux-gnu/7/lto-wrapper

OFFLOAD_TARGET_NAMES=nvptx-none

OFFLOAD_TARGET_DEFAULT=1

Target: x86_64-linux-gnu

Configured with: ../src/configure -v --with-pkgversion=’Ubuntu 7.5.0-6ubuntu2’

--with-bugurl=file:///usr/share/doc/gcc-7/README.Bugs

--enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++

--prefix=/usr --with-gcc-major-version-only --program-suffix=-7

--program-prefix=x86_64-linux-gnu- --enable-shared

--enable-linker-build-id --libexecdir=/usr/lib

--without-included-gettext --enable-threads=posix

--libdir=/usr/lib --enable-nls --enable-bootstrap

--enable-clocale=gnu --enable-libstdcxx-debug --enable-libstdcxx-time=yes

--with-default-libstdcxx-abi=new

--enable-gnu-unique-object --disable-vtable-verify

--enable-libmpx --enable-plugin --enable-default-pie

--with-system-zlib --with-target-system-zlib

--enable-objc-gc=auto --enable-multiarch --disable-werror

--with-arch-32=i686 --with-abi=m64

--with-multilib-list=m32,m64,mx32 --enable-multilib

--with-tune=generic --enable-offload-targets=nvptx-none

--without-cuda-driver --enable-checking=release

--build=x86_64-linux-gnu --host=x86_64-linux-gnu --target=x86_64-linux-gnu

Thread model: posix

gcc version 7.5.0 (Ubuntu 7.5.0-6ubuntu2)

Relevant OS Information

Distributor ID: Ubuntu

Description: Ubuntu 20.04.3 LTS

Release: 20.04

Codename: focal

Page 8 of 8

Some Relevant CPU Information

Update: We had to switch the grading platform setup. The CPU for the grading platform is now either an
Intel Xeon or an AMD EPYC CPU. Our solution does not depend on any Intel/AMD-specific instructions,
nor assembly.

	Background: Interpreted vs. Native Languages
	Part A: Make a Deeply Recursive Function Run (15 Points)
	Part B: Handle StackOverflow (15 Points)

