
Page 1 of 3

Problem 4: Cryptonite
By Nalin Ranjan

By almost all counts, this problem was at least the most tedious, if not the hardest. No one was able to
solve part (ii).

(i) The idea for this one was to turn it in to a normal crib-dragging problem by observing that either
c1⊕ c2⊕1 = m1⊕m2 holds, or c2⊕ c3⊕1 = m2⊕m3 holds. (Here 1 denotes the number, represented
in 42× 8 = 336 bits.) More precisely, if s’s last bit was one, then the former must be true, while if s’s
last bit was two, then the latter must be true. Intuitively, this is saying that out of three consecutive
numbers, there exists a consecutive pair of these numbers that share all but their least significant bit.

Once you get the XOR of two plaintexts, you can proceed as if you were just cracking a normal
OTP. In this part, it happened that c2 ⊕ c3 ⊕ 1 = m2 ⊕ m3 held. However, even if you chose to
crib-drag on c1 ⊕ c2 ⊕ 1, you would still be able to recover the vast majority of the plaintext, because
(s+1)⊕(s+2) was all zeroes, except in the eight least significant place values. So you would have been
able to recover all but the last character (byte) in the plaintexts, and used what you had recovered
already to guess the last byte of any plaintext. And once you recover any one of the plaintexts fully,
you can XOR it with the corresponding ciphertext to get the secret key, which will suffice to crack
all of the ciphertexts.

A Note on Crib-Dragging : It seemed like many people thought that words like princeton or eisgruber
were in the plaintexts, but this was not the case. The idea was to use the structure of the English
language (common words, the use of spaces, etc.) to guess what might be in the ciphertexts. In this
case, the plaintexts were

m1 = "you miss 100% of the shots you don’t take."

m2 = "when you reach a fork in the road, take it"

m3 = "why aren’t you responding to me? so sad :("

So crib-dragging words like you, the, of, when, why, to, me, and so on would have yielded something
intelligible. Another indispensible trick: when you crib drag a word, try doing it with spaces at
the beginning and end. This gets you two more characters as long as the word was not at the very
beginning or very end of the plaintext.

(ii) The second part was more of an open-ended problem. The best solution we know of requires knowing
most of the ciphertexts, and is a brute-force method. It depends on the observation that if we know
what the last k bits of s1 and s2 are, then we know what the last k bits of s1 + i · s2 are, for any i.



Page 2 of 3

The idea is to brute-force guess the last bytes (8 bits) of s1 and s2, calculate the last byte of s1 + i · s2
for 1 ≤ i ≤ 10, use this to decode all ciphertexts, then eliminate all choices where any of the last
bytes of the decoded plaintexts were not allowed characters (lowercase letters or the six additional

punctuations we gave you). With access to 10 ciphertexts, there was almost always only one choice,
so you didn’t even have to determine which of two options made more sense. Once you recovered the
last byte, you would enumerate all possibilities for the second-to-last byte and do the same procedure
as before, eliminating any choices where any of the second-to-last bytes weren’t allowable characters.
This method works without not much if you know all ciphertexts, takes a decent bit of effort if you
only know 6-8, and becomes nearly impossible if you know fewer, since the number of valid possibilities
per byte you are trying to crack grows too large.

We’ve attached some code in SolutionCryptoniteII.java for you to play with. It takes one
command-line argument n, which is the index of the byte that you want to brute-force. Start off
with n = 41 (the last byte), and you’ll notice that there is only one possible choice of the last bit of
s1 and s2 that decodes the last bit of all the ciphertexts to an allowable value:

s1[n] = 0xdb, s2[n] = 0xa6

The Last 1 characters of the resulting Decoded Plaintexts:

n

u

?

s

.

!

!

?

e

!

which suggests that the last byte of s1 is 0xdb and the last byte of s2 is 0xa6. We can now fill this
information in on lines 72 and 77 of SolutionCryptoniteII.java, recompile, and then run java

SolutionCryptoniteII 40 to try and figure out the next bytes of s1 and s2. The more bytes we
recover, the easier it becomes, since words start to be revealed. For example, once you’ve revealed
fifteen characters, the program prints (see next page)



Page 3 of 3

s1[n] = 0x19, s2[n] = 0x39

The Last 15 characters of the resulting Decoded Plaintexts:

u cooler, dolan

u. i’ll show u

sity president?

n’t you jealous

books than you.

physics than u!

n paul stevens!

economic forum?

ing your coffee

’t do it again!

so we could guess that the second to last word in plaintext 3 is university, the fourth to last word in
the last plaintext is won’t, etc. You can find the decoded plaintexts under the decoded plaintexts

directory of the solution files.

This one was definitely a hard one though! It would probably have been more reasonable to solve
this in a 24-hour period.

Plaudits:

• Congratulations to Alex Valtchanov ’22 and Brandon Huynh ’22, as well as Devon Ulrich ’23 and
Andrew Chen ’23, for solving part (i).

• Since no one solved part (ii), Alex Valtchanov ’22 and Brandon Huynh ’22 will win the “best code-
breaker” prize for solving part (i) the fastest!


