Problem 5: Abnormal Gauss [HackerRank]
By Sacheth Sathyanarayanan

1 Background: Normal (Gaussian) Distributions

The normal distribution is all around us — the blood pressure of the world’s population, the height of people in America, and even our shoe sizes all seem to follow a normal distribution. All this complexity is captured by this marvelous equation:

\[P(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}. \]

For the uninitiated, \(P(x) \) here is called the Probability Density Function of the normal distribution, where \(\mu \) represents the mean of the distribution and \(\sigma \) the standard deviation, a measure of how spread out the data is. You can think of \(P(x) \) as a measure of the relative likelihood that a sample drawn from the normal distribution has value \(x \). Note, however, that \(P(x) \) does not tell you the probability of a sample drawn from the normal distribution having value \(x \) (perhaps counterintuitively, the probability that the normal distribution takes on any exact value is 0.)

2 Problem

For this problem, we are going to concern ourselves with the standard normal distribution i.e. where \(\mu = 0 \) and \(\sigma = 1 \). The Probability Density Function of the Standard Normal Distribution equals

\[P(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}. \]

The function \texttt{amirite} (provided in Python below, as well as in other languages in separate files on the website) aims to return a random number drawn from the Standard Normal Distribution. However, the code isn’t complete. In particular, the functions \texttt{f} and \texttt{g} (called in lines 11 and 21 respectively) haven’t been defined.

Your task is to read through the definitions of the functions \texttt{bern} and \texttt{amirite}, figure out what they do, and come with definitions for the functions \texttt{f} and \texttt{g} so that \texttt{amirite} samples a random number from the Standard Normal Distribution. You further have the constraints that \(g(0) = 0 \) and that \(f \) and \(g \) are deterministic functions.
import random
import numpy as np

def bern():
 n = 0
 u,v = 0.5,random.uniform(0,1)
 while (v >= u):
 u = v
 v = random.uniform(0,1)
 n = n + 1
 return f(v, n)

def amirite():
 flag2 = False
 while (not flag2):
 flag1 = False
 while (not flag1):
 k = 0
 while (bern()):
 k = k + 1
 m = g(k)
 flag1 = True
 for i in range(m):
 flag1 = flag1 and bern()
 x = random.uniform(0,1)
 flag2 = random.uniform(0,1) < np.exp(-0.5*x*(2*k+x))
 y = k + x
 if (random.uniform(0,1) > 0.5):
 return -1*y
 return y

Once you figure out what the functions f and g should be, write a program that, takes as input some positive integer n, and prints the value of

$$f(1/1, 1) + f(1/2, 2) + \cdots + f(1/(n-1), n-1) + f(1/n, n) + g(1) + g(2) + \cdots + g(n-1) + g(n).$$

Remember that any variable with value “True” evaluates to 1, while any variable with value “False” evaluates to 0.
Here is some code to help you test your implementation:

```python
n = 100000
data = np.zeros(n)
for i in range(n):
    data[i] = amirite()
plt.hist(data, bins=np.arange(data.min(), data.max()+1, 0.1))
plt.show()
```

This program calls the `amirite` function repeatedly and plots a histogram of the returned values. If your answer is correct, the plot here should look relatively normal. We’ve provided this code in C++ and Java too (found under the auxiliary files zip for this problem).

Input
The first and only line contains a positive integer n.

Output
The output should consist of the value of the expression

$$\sum_{i=1}^{n} \left(f\left(\frac{1}{i}, i\right) + g(i) \right) = f(1/1, 1) + f(1/2, 2) + \cdots + f(1/n, n) + g(1) + g(2) + \cdots + g(n).$$

Note
We are fairly certain that there is a unique simple choice for both f and g satisfying the constraints above. However, if you have a solution that you think works and are failing the HackerRank testcases, please email us at ptonacm@princeton.edu or jump on the Zoom call.