
Page 1 of 3

Problem 5: Abnormal Gauss [HackerRank]
By Sacheth Sathyanarayanan

1 Background: Normal (Gaussian) Distributions

The normal distribution is all around us — the blood pressure of the world’s population, the height of
people in America, and even our shoe sizes all seem to follow a normal distribution. All this complexity is
captured by this marvelous equation:

P (x) =
1√

2πσ2
· e−

(x−µ)2

2σ2 .

For the uninitiated, P (x) here is called the Probability Density Function of the normal distribution, where
µ represents the mean of the distribution and σ the standard deviation, a measure of how spread out the
data is. You can think of P (x) as a measure of the relative likelihood that a sample drawn from the normal
distribution has value x. Note, however, that P (x) does not tell you the probability of a sample drawn
from the normal distribution having value x (perhaps counterintuitively, the probability that the normal
distribution takes on any exact value is 0.)

2 Problem

For this problem, we are going to concern ourselves with the standard normal distribution i.e. where µ = 0
and σ = 1. The Probability Density Function of the Standard Normal Distribution equals

P (x) =
1√
2π
e−x2/2.

The function amirite (provided in Python below, as well as in other languages in separate files on the
website) aims to return a random number drawn from the Standard Normal Distribution. However, the
code isn’t complete. In particular, the functions f and g (called in lines 11 and 21 respectively) haven’t
been defined.

Your task is to read through the definitions of the functions bern and amirite, figure out what they
do, and come with definitions for the functions f and g so that amirite samples a random number from
the Standard Normal Distribution. You further have the constraints that g(0) = 0 and that f and g are
deterministic functions.



Page 2 of 3

1 import random

2 import numpy as np

3

4 def bern():

5 n = 0

6 u,v = 0.5,random.uniform(0,1)

7 while (v >= u):

8 u = v

9 v = random.uniform(0,1)

10 n = n + 1

11 return f(v, n)

12

13 def amirite():

14 flag2 = False

15 while (not flag2):

16 flag1 = False

17 while (not flag1):

18 k = 0

19 while (bern()):

20 k = k + 1

21 m = g(k)

22 flag1 = True

23 for i in range(m):

24 flag1 = flag1 and bern()

25 x = random.uniform(0,1)

26 flag2 = random.uniform(0,1) < np.exp(-0.5*x*(2*k+x))

27 y = k + x

28 if (random.uniform(0,1) > 0.5):

29 return -1*y

30 return y

Once you figure out what the functions f and g should be, write a program that, takes as input some
positive integer n, and prints the value of

f(1/1, 1) + f(1/2, 2) + · · ·+ f(1/(n− 1), n− 1) + f(1/n, n) + g(1) + g(2) + · · ·+ g(n− 1) + g(n).

Remember that any variable with value “True” evaluates to 1, while any variable with value “False” eval-
uates to 0.



Page 3 of 3

Here is some code to help you test your implementation:

1 n = 100000

2 data = np.zeros(n)

3 for i in range(n):

4 data[i] = amirite()

5

6 plt.hist(data, bins=np.arange(data.min(), data.max()+1, 0.1))

7 plt.show()

This program calls the amirite function repeatedly and plots a histogram of the returned values. If your
answer is correct, the plot here should look relatively normal. We’ve provided this code in C++ and Java
too (found under the auxiliary files zip for this problem).

Input
The first and only line contains a positive integer n.

Output
The output should consist of the value of the expression

n∑
i=1

(
f(1/i, i) + g(i)

)
= f(1/1, 1) + f(1/2, 2) + · · ·+ f(1/n, n) + g(1) + g(2) + · · ·+ g(n).

Note
We are fairly certain that there is a unique simple choice for both f and g satisfying the constraints above.
However, if you have a solution that you think works and are failing the HackerRank testcases, please
email us at ptonacm@princeton.edu or jump on the Zoom call.

https://princeton.zoom.us/my/coscon

	Background: Normal (Gaussian) Distributions
	Problem

